

Pharmaceutical Secondary Standards: A COA Built for Strong Lab Foundations

Dr Ilona Matus Advanced Analytical, Life Sciences, August 5., 2020

The life science business of Merck KGaA,
Darmstadt, Germany operates as
MilliporeSigma in the U.S. and Canada.

Agenda

Hierarchy of Certified Reference Materials

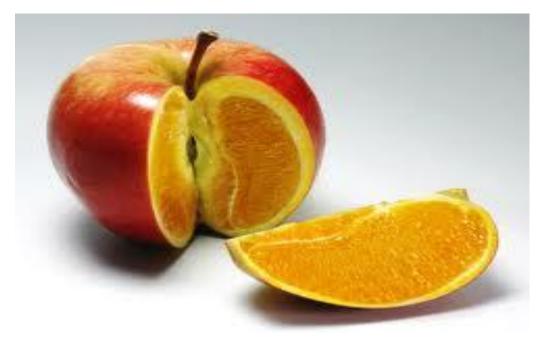
Impurity Portfolios and Complex Mixture CRMs

Traceability of Secondary Standards as Working Standards

Pharmaceutical Standard COA and Characterization

Dr. Ilona Matus

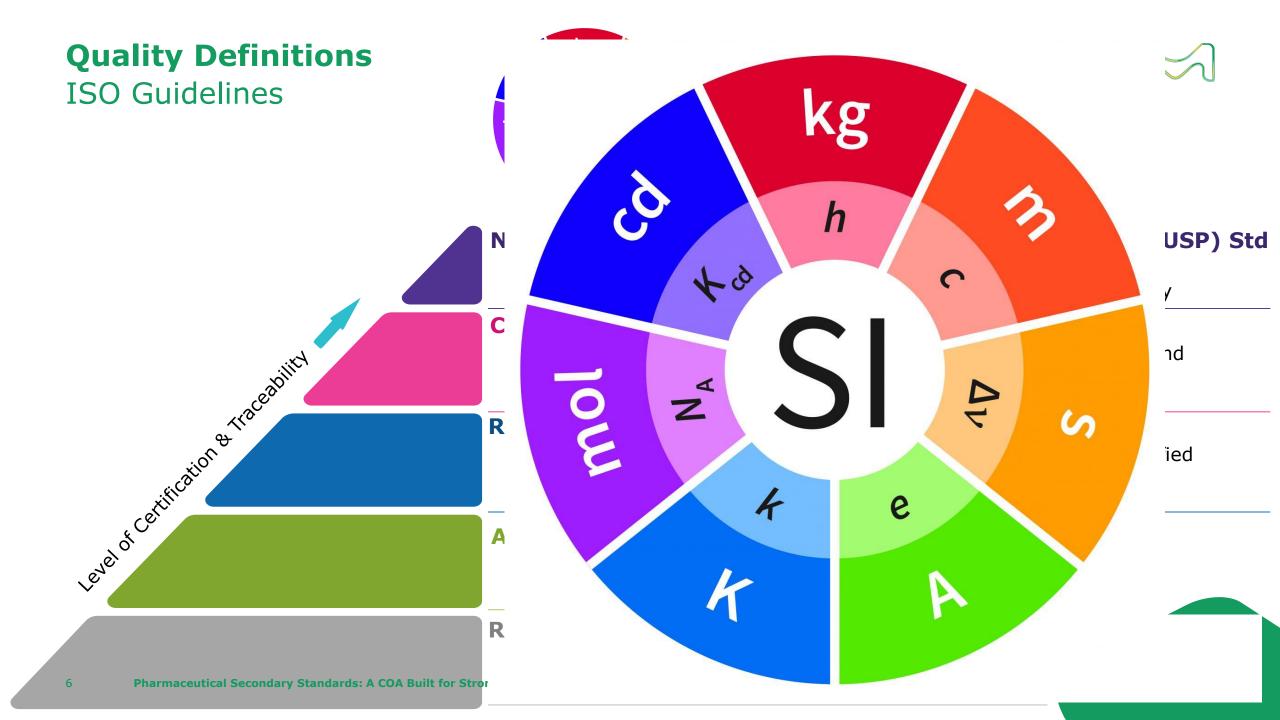
- Current Role: Analytical Sciences Liaison, Darmstadt, Germany
- >14 years with Merck
- >10 years in Pharma R&D
- Master's degree and promotion in Pharmaceutical Chemistry from the University of Budapest, Hungary



Hierarchy of Certified Reference Materials

Standards and Reference Materials

Comparison of a sample with something KNOWN = Reference Material


Qualitative
identification
presence or absence
physical properties
-screening, id tests

Quantitativeamount, potency
Cut off
-assays, potency, limit tests

What does testing mean? - Safety, Integrity, Strength, Purity, Quality!

Types of Reference Materials – Authorized Standards

Types of Primary Standards

Primary Measurement Standard SRM/NMI

A primary standard in metrology is a standard that is designated or widely acknowledged as having the highest metrological qualities and whose value is accepted without reference to other standards of the same quantity, within a specified context.*

Certificates provide the Property Value, Associated Uncertainty, and Metrological Traceability

Compendial Primary Standard USP/EP/BP

In a Pharmaceutical setting, a primary or compendial standard is one having the highest metrological qualities whose value is accepted without reference (comparison) to another standard

Certificates proved a content

Quality DefinitionsISO Guidelines

National Metrology (eg. NIST, NRC) or Compendial (eg. USP) Std

- Issued by an authorized body
- Considered to provide the highest level of accuracy and traceability

The validity of using Primary Standards will never be questioned

- Primary Standards are the authority, their value is accepted without reference to other standards
- Immediately recognized by auditors
- Can be used to qualify other standards

Primary Standards are designed to be used with the monograph

- Perform exactly as expected since they were designed according to the monograph
- Can be used in any analytical or laboratory use as specified by compendia

Primary Standards may be what is required for your specific application

Use of primary standards often written into internal SOPs - GMP

Quality Definitions

Traceable Certified Reference Materials

Secondary Standards are Certified Reference Materials that are traceable, as available, to primary standards or to the SI.

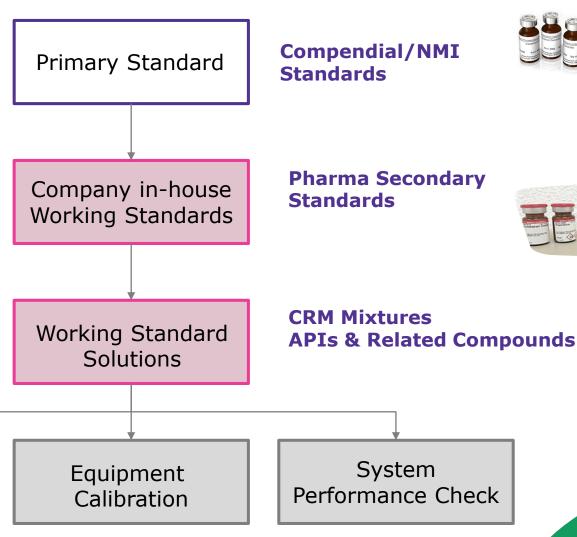
National Metrology (eg. NIST, NRC) or Compendial (eg. USP) Std

- Issued by an authorized body
- Considered to provide the highest level of accuracy and traceability

Certified Reference Material (CRM) (ISO 17034, 17025)

- Considered to provide the highest level of accuracy, uncertainty, and traceability to an SI unit of measurement
- Manufactured by an accredited Reference Material Producer

Primary or Secondary Standards are for use in analytical or laboratory applications as specified in compendia


These analytical standards can be used for a variety of method verification practices including instrument qualification and calibration, analytical method validation, system suitability testing, assays and quality control checks.

Secondary Standards

Use of Working Standard Solutions

Compendial standards are offered from different Pharmacopoeia through multiple distribution agreements

Method

Validation

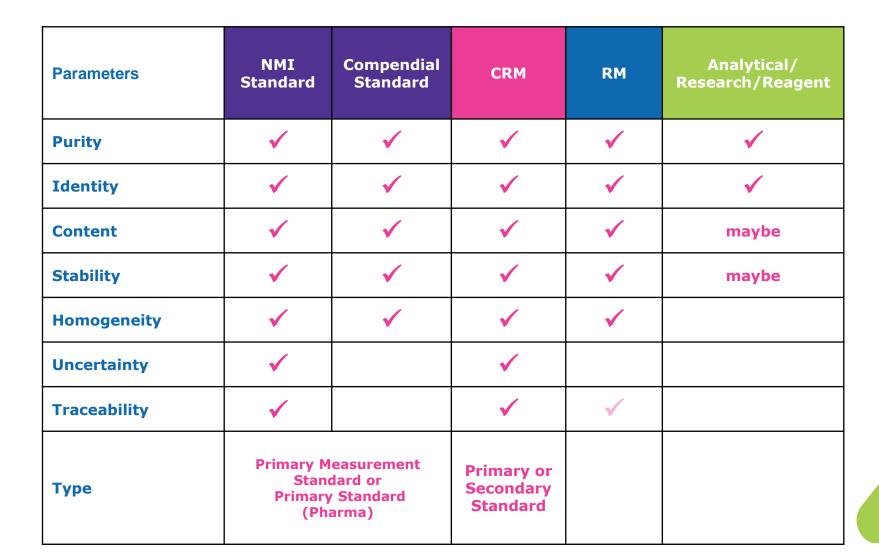
Secondary Standards

Regulatory Recognition

(US)FDA: Guidance for Industry; Analytical Procedures and Methods Validation, August 2000:

"A reference standard (i.e., primary standard) may be obtained from the USP/NF or other official sources (e.g., CBER, 21 CFR 610.0). A working standard (i.e., in-house or secondary standard) is a standard that is qualified against and used instead of the reference standard."

United States Pharmacopeia, General Chapter <1010>:


Use of Reference Standards: "Users of *USP* and *NF* apply a range of strategies and practices to assure articles achieve and maintain conformance with compendial requirements, including when and if tested. Such strategies and practices can include the **use of secondary standards traceable to the USP**Reference Standard, to supplement or support any testing undertaken for the purpose of conclusively demonstrating conformance to applicable compendial standards."

European Pharmacopoeia, Chapter 5.12:

"Secondary standard: A standard established by comparison with a primary standard. A secondary standard may be used for routine quality control purposes for any of the uses described above for primary standards provided that it is established with reference to the primary standard."

The Hierarchy of Reference Materials – What's the difference?

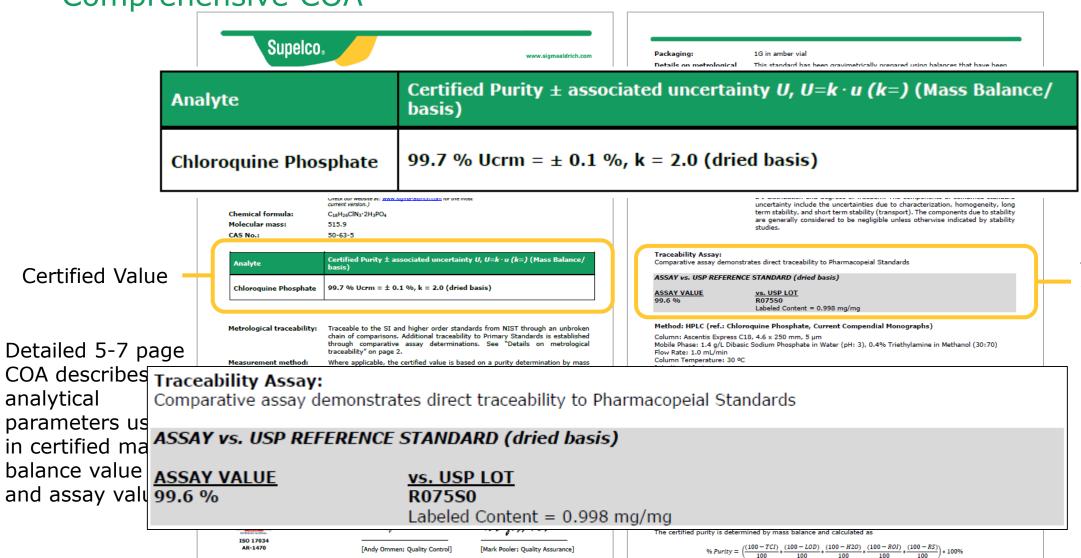
Hierarchy of Reference Materials

Compendial/NMI Standards

> Certified Reference Material

Reference Material

Analytical/ Research/Reagent



Traceability of Secondary Standards as Working Standards

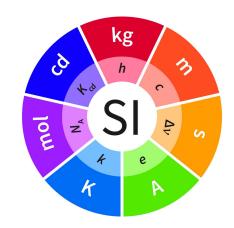
Comprehensive COA

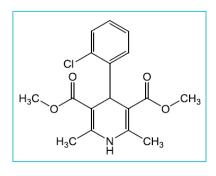
Certificate Page 2 of 5

Certificate version 03

Traceable Assay Values

Supelco


Sigma-Aldrich RTC, 2931 Soldier Springs Rd. Laramie, WY 82070, USA; Tel. 1 307-742-5452; Fax 1 307-855-831-9211; www.sigmaaldrich.com


Traceability – Two Ways

Certified Purity

99.0 \pm 0.8% (k=2) Mass Balance / as is basis

PHR2052

Amlodipine Related Compound C (Amlodipine Impurity G)

Traceability Assay

99.4% vs. **USP Lot F012R0** (0.99 mg/mg) as is basis

99.4% vs. **EP CRS Batch 3.0** (*100.2%) as is basis

*The assigned content of the EP CRS was determined by assay against USP Reference Standard, as there was no Pharma labeled content on the EP Standard.

US© REFERENCE STANDARD

AMLODIPINE RELATED COMPOUND C 25 mg (Dimethyl 4-(2-chlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate)

Name	Amlodipine impurity G CRS
Catalogue code	Y0001070
Batch number*	3
Assigned value	n/a

Pharmaceutical Standard COA and Characterization

Qualification of Standards

Secondary Standard Qualification

- Compendial monographs are followed analyses called out in monograph are performed
- If no compendial monograph is available, then methods may be developed from API monograph and validated

IDENTITY

- NMR
- FTIR

- GCMS, LCMS
- Additional Techniques (Optical Rotation, Melting/Boiling Point, Density, Refractive Index)

PURITY / POTENCY

- Mass Balance
 - Uses multiple techniques for chromatographic purity and residuals
- Titrations
 - Assignment of contact through primary standard

- Assays Chromatographic
 - Traceable to compendial/primary standard
 - Sometimes availability of primary reference materials are limited

Mass Balance

The certified purity is determined by mass balance and calculated as:

%
$$Purity = (100 - ROI - LOD - H_2O - RS) * (\frac{100 - TCI}{100})$$

Contributions from:

ROI = Residue on Ignition

LOD = Loss on Drying

 H_2O = Water content determined by Karl Fischer

RS = Residual Solvents

TCI = Total Chromatographic Impurities

Mass Balance - Residue

% $Purity = (100 - ROI - LOD - H_2O - RS) * (\frac{100 - TCI}{100})$

Excerpt from PHR2478 Adrenalone HCI

RESIDUE ANALYSIS

Method: Sulfated Ash Sample Size: ~ 40 mg

Mean of three measurements, Residue = **0.046%**

Certified Purity

99.8 \pm 0.2% (k=2) Mass Balance / as is basis

ROI contribution = 0.046%

Mass Balance - Water

% $Purity = (100 - ROI - LOD - H_2O - RS) * (\frac{100 - TCI}{100})$

Excerpt from PHR2478 Adrenalone HCl

WATER DETERMINATION

Method: Karl Fischer

Mean of three measurements, Water Content = **0.0097%**

99.8 \pm **0.2%** (k=2) Mass Balance / as is basis

Certified Purity

 H_2O contribution = 0.0097%

Mass Balance - Residual Solvent

% $Purity = (100 - ROI - LOD - H_2O - RS) * (\frac{100 - TCI}{100})$

Excerpt from PHR2478 Adrenalone HCI

RESIDUAL SOLVENTS

Method: GC-MS Headspace (ref.: Adapted from Residual Solvents USP <467>)

Column: SPB-624 Carrier gas: He Flow: 1.2 mL/min Split Ratio: 1:5

Injection/Temperature: 1 mL/220 °C

Temperature Program: 40 °C for 5 min, 8 °C/min to 200 °C, hold 5 min

Solvents Detected: None

Certified Purity

99.8 \pm 0.2% (k=2) Mass Balance / as is basis

Residual Solvent contribution = 0%

Mass Balance – Chromatographic Impurity

%
$$Purity = (100 - ROI - LOD - H_2O - RS) * (\frac{100 - TCI}{100})$$

Certified Purity

99.8 \pm 0.2% (k=2) Mass Balance / as is basis

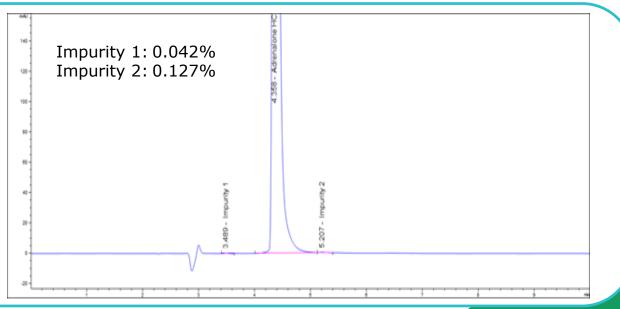
Excerpt from PHR2478 Adrenalone HCI

TCI contribution = 0.169%

TOTAL CHROMATOGRAPHIC IMPURITIES

Method: HPLC

Column: Ascentis Express C18, 150 mm x 4.6mm, 5µm particle size


Mobile Phase A: 0.1% TFA in Water Mobile Phase B: 0.1% TFA in Acetonitrile

Mobile Phase Ratio: 97:3 (A:B)

Flow Rate: 0.5 mL/min Column Temperature: 35 °C Injection Volume: 5 µL

Detector: UV/DAD/VWD, Wavelength: 230 nm

Total Chromatographic Impurities: 0.169%

Purity Assignment

% $Purity = (100 - ROI - LOD - H_2O - RS) * (\frac{100 - TCI}{100})$

Contributions for PHR2478 Adrenalone HCI

ROI contribution = 0.046% LOD contribution = 0.0097%

 H_2O contribution = 0.0097%

RS contribution = 0%

TCI contribution = 0.169%

%
$$Purity = (100 - 0.046 - 0 - 0.0097 - 0) * (\frac{100 - 0.169}{100})$$

$$\% Purity = 99.8\%$$

Certified Purity

 $99.8 \pm 0.2\%$ (k=2) Mass Balance / as is basis

Purity or Potency Value

Expanded Uncertainty

Uncertainty Calculation takes into consideration the following sources of uncertainty:

$$u_{CRM} = [u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2]^{1/2}$$

$$u_{char} = \sqrt{\sum u_i(x_i)^2}$$

$$u_{bb} = \sqrt{\frac{MS_w}{replicates}} * \sqrt{\frac{2}{Degrees of Freedom within groups}}/k$$
, $k = 2$

Excerpt from COA

Homogeneity was assessed in accordance with ISO Guide 35. Completed units were sampled using a random stratified sampling protocol. The results of chemical analysis were then compared by Single Factor Analysis of Variance (ANOVA). The uncertainty due to homogeneity was derived from the ANOVA. Heterogeneity was not detected under the conditions of the ANOVA.

Analytical method: HPLC

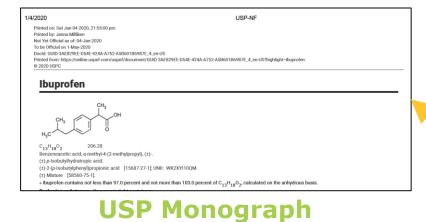
Sample size: 50 mg

ed with

Expanded Uncertainty

Certified Purity

99.8 ± 0.2% (k=2)
Mass Balance/ as is basis


Supelco

Expa

expa

Traceablity to the Pharmacopoeia

Secondary
Pharma
Standards

USP Standards

Batch 50 Co 250 mg CONTROL COME CO 250 mg CONTROL CO

EP Standards

Description of the second of t

BP Standards

3300 Ibuprofen / Official Monographs

Ibuprofen

N,C CH, CH

 $C_{13}H_{11}O_{2}$ 206.28 Benzeneacetic acid, α -methyl-4-(2-methylpropyl), (\pm)- $(\pm$)- ρ -Isobutylphydratropic acid. (\pm)-2- $(\rho$ -Isobutylphenylpropionic acid [15687-27-1]. (\pm) Mixture [8560-75-1].

» Ibuprofen contains not less than 97.0 percent and not more than 103.0 percent of $C_{13}H_{18}O_2$, calculated on the anhydrous basis.

Packaging and storage—Preserve in tight containers

031

sum of the responses of all the peaks, excluding that of the solvent peak: not more than 0.3% of any individual impurity is found, and the sum of all the individual impurities found does not exceed 1.0%.

Limit of Ibuprofen related compound C—Using the chromatograms of the Assay preparation and the Ibuprofen related compound C standard solution, obtained as directed in the Assay, calculate the percentage of ibuprofen related compound C (Ct₂H₁₀O) in the portion of ibuprofen taken by the formula:

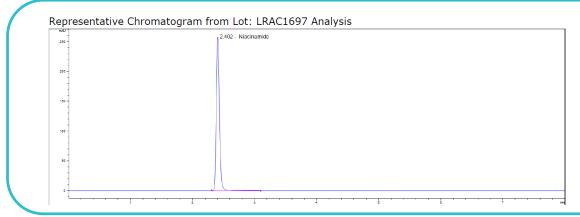
 $10,000(C/W)(R_U/R_S)$

in which C is the concentration, in mg per mL, of USP lbuprofen Related Compound C RS in the lbuprofen related compound C standard solution; W is the weight, in mg, of lbuprofen taken to prepare the Assay preparation; and R₀ and R₀ are the peak response ratios of lbuprofen related compound C to valerophenone obtained from the Assay respectation, and the libusering related compound C standard compound C standard.

EP Monograph

Traceable

- Methods are referenced to the compendial monograph and analytical conditions are used
- Pharmacopeial lots and content of Primary Standards are provided
- When new lots are released by the pharmacopeia, Secondary Standards are recertified against the new Primary Standard, and the updated COA is available online.


Traceability Assay

99.4% vs. **USP Lot O0L486** (0.999 mg/mg) as is basis

99.6% vs. **EP CRS Batch 1.7** (*99.6%) as is basis

99.8% vs. **BP CRS Batch 2719** (99.8%) as is basis

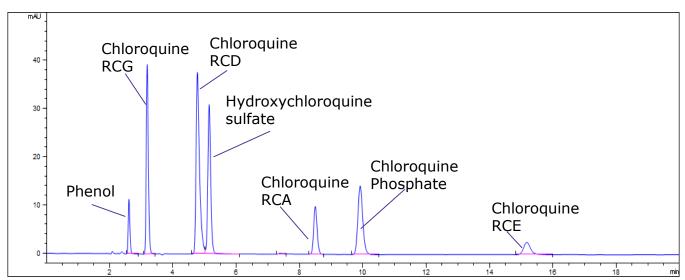
Excerpt from PHR1033 Niacinamide COA

Method: HPLC (ref.: Niacinamide, Current Compendial Monographs)

Column: Ascentis Express C18, 4.6 x 250 mm, 5 μm

Mobile Phase: 1 g/L Sodium 1-Heptanesulfonic acid in Water: Methanol; (70:30)

Flow: 1.0 mL/min


Column Temperature: 40 °C

Injection: 5 μL Detector: 254 nm

^{*}The assigned content of the EP CRS was determined by assay against USP and BP Reference Standard, as there was no labeled content on the EP Standard.

Assignment of Compendial Standards by Current Compendial Monograph

Chloroquine Phosphate, PHR1258, System Suitability, per USP monograph

When monographs are available, pharma secondary standards are qualified using the compendial monograph methods and held to the requirements of that method.

Excerpts from USP current compendial monograph Chloroquine Phosphate

System suitability solution: 2.0 µg/mL each of <u>USP Chloroquine Phosphate RS</u>, <u>USP Phenol RS</u>, <u>USP Hydroxychloroquine Sulfate RS</u>, <u>USP Chloroquine Related Compound A RS</u>, <u>USP Chloroquine Related Compound D RS</u>, <u>USP Chloroquine Related Compound E RS</u>, and <u>USP Chloroquine Related Compound G RS</u> in *Mobile phase*

System suitability

Sample: System suitability solution

[Note - See Table 1 for the corresponding relative retention times.]

Suitability requirements

Resolution: NLT 2.0 between chloroquine and chloroquine related compound A and NLT 2 between adjacent impurities

Tailing factor: NMT 2.0 for peaks corresponding to chloroquine phosphate, phenol, hydroxychloroquine sulfate, chloroquine related compound A, chloroquine related compound D, chloroquine related compound E, and chloroquine related compound G

Relative standard deviation: NMT 5.0% for chloroquine phosphate, phenol, hydroxychloroquine sulfate, chloroquine related compound A, chloroquine related compound D, chloroquine related compound E, and chloroquine related compound G

Additional Compendial Assignments

Content can be assigned by Titration

Excerpt from PHR2618 Sodium Acetate Trihydrate COA

ASSAY BY TITRATION

Method: Titrated by 0.1 N Perchloric acid

Mean of nine measurements: **99.6** % $U_{crm} = \pm 0.6$ %, k = 2.0

Content can be assigned by UV-Vis

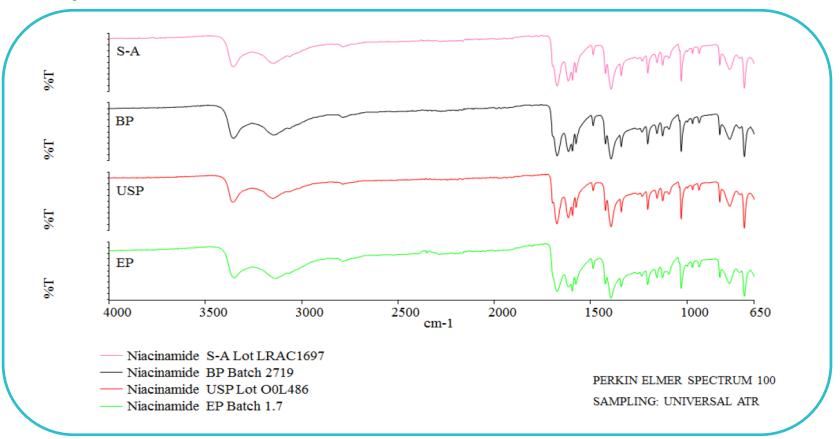
Excerpt from PHR1196 Nitrofurazone COA

METHOD: UV (ref.: Nitrofurazone, Current Compendial Monographs)

Solvent: Dimethylformamide, Water

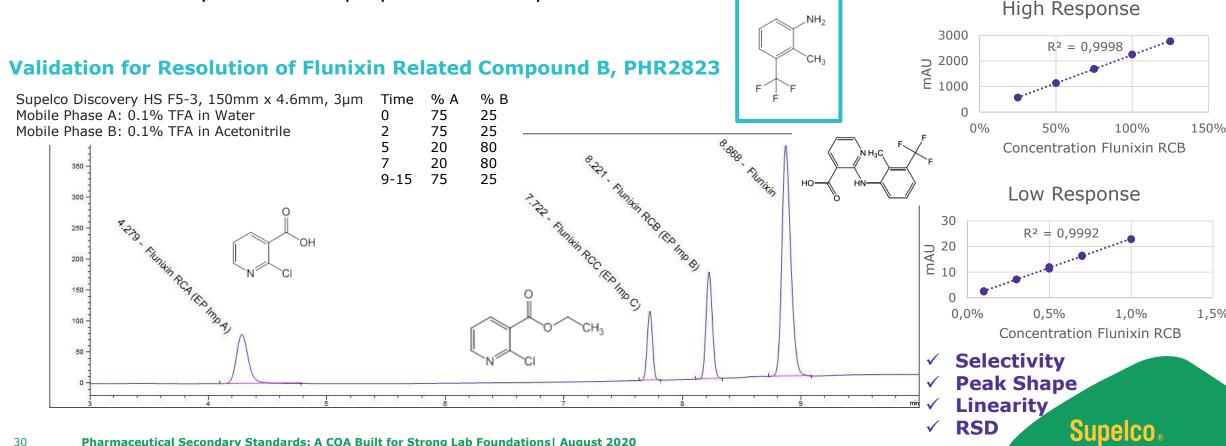
Cell Path length: 1cm Wavelength: 375nm

100.1% vs. **USP Lot R085G0** (Labeled Content 0.999 mg/mg)


99.95% vs. **EP Lot 2.0** (Labeled Content 0.999 mg/mg)

FTIR Traceability

FTIR comparison shows identification traceability to Primary Pharmacopeial Standards


Excerpt from PHR1033 Niacinamide COA

Assignment of Compendial Standards without Monographs

- Related Compounds and Impurities may not have dedicated compendial monographs available
- Sometimes API monographs can be used for development, but sometimes newly developed methods are required due to properties of analyte on hand

Assignment of Compendial Standards without Monographs References

- New APIs and Impurities may not have official or even pending compendial monographs available
- Mass Balance is performed and methods are validated

Safinamide Family - Parkinson's Drug

$$\mathsf{F} = \mathsf{CH}_3$$

1. Safinamide Imidazolidinone PHR2382

3. Safinamide Mesylate PHR2379

2. Safinamide Defluor-Derivative PHR2381

4. Safinamide Free Acid PHR2380

Ascentis Express C8 (5µm) 150 x 4.6 mm

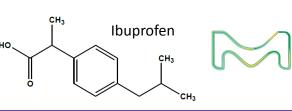
UV @ 226 nm

MPA: Water with 0.1 % Trifluoroacetic acid

MPB: Acetonitrile

300 -	5-8	90-80	10-20
	8-10	80-70	20-30
200 -	10-15	70-60	30-40
	15-17	60-85	40-15
100 -	17-18	85-90	15-10
	18-20	90	10

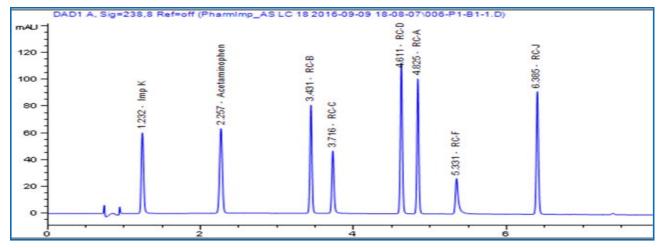
Peaks	Compound	Resolution	Theoretical plates	Tailing factor
1	Safinamide Imidazolidinone	-	87122	0.927
2	Safinamide Defluor-Derivative	2.11	100843	0.930
3	Safinamide Mesylate	2.87	114974	0.959
4	Safinamide Free Acid	2.69	93783	1.063



Impurity Portfolios and Complex Mixture CRMs

Ibuprofen Portfolio of Impurities and Related Compounds

Ibuprofen & Related Compounds	PHR Part	CAS	USP	EP.	BP
Ibuprofen	PHR1004	15687-27-1	Х	Х	х
(2RS)-2-[3-(2-methylpropyl)phenyl]propanoic acid. Ihuprofen Impurity A	PHR1933	66622-47-7		*ID	
(2RS)-2-(4-butylphenyl)propanoic acid, <i>Ibuprofen Impurity B</i>	PHR1934	3585-49-7		х	
4-Isobutylacetophenone, Ibuprofen Impurity E / Ibuprofen Related Compound C	PHR1146	38861-78-8	х		х
2 [4 (2 mothylpropyl)phonyl]proponoic acid, Ibuprofon Impurity F / Ibuprofon Rolated Compound F	PHR1964	65322-85-2		x	
(1RS,4RS)-7-(2-methylpropyl)-1-[4-(2-methylpropyl)phenyl]-1,2,3,4-tetrahydronaphthalene-1,4-dicarboxylic acid, Ibuprofen Impurity G	PHR1965	NA			
(3RS)-1,3-bis[4-(2-methylpropyl)phenyl]butan-1-one, Ibuprofen Impurity H	PHR2028	NA			
1-(2-methylpropyl)-4-[(3RS)-3-[4-(2-methylpropyl)phenyl]butyl]benzene, Ibuprofen Impurity I	PHR1984	NA			
(2RS)-2-[4-(2-methylpropanoyl)phenyl]propanoic acid, Ibuprofen Impurity J / Ibuprofen Related Compound J	PHR1978	65813-55-0	X	*ID	
(2RS)-2-(4-ethylphenyl)propanoic acid, <i>Ibuprofen Impurity N</i>	PHR1935	3585-52-2		*ID	
(2RS)-2-[4-(1-methylpropyl)phenyl]propanoic acid, Ibuprofen Impurity O	PHR1983	64451-76-9			
1,1'-(ethane-1,1-diyl)-4,4'-(2-methylpropyl)dibenzene, <i>lbuprofen Impurity R</i>	PHR1982	102120-87-6			
4-Isobutyrylacetophenone	PHR2124	103931-20-0			
4-(1-Hydroxy-2-methylpropyl)-acetophenone	PHR2136	1314907-71-5			
2-(4-Isobutylphenyl)prop-2-enoic Acid	PHR2141	6448-14-2			
Ibuprofen 1,3-Butylene Glycol Esters (Mixture of Regio- and Stereoisomers)	PHR2142	NA			
Ibuprofen 2,3-Butylene Glycol Ester	PHR2143	95093-59-7			
Ibuprofen 1,2-Propylene Glycol Esters (Mixture of Regio- and Stereoisomers)	PHR2144	NA			
Ibuprofen 1,2,3-Propanetriol Esters (Mixture of Regio- and Stereoisomers)	PHR2145	NA			
2-(4-Secbutylphenyl)Prop-2-Enoic Acid	PHR2147	NA			


^{*}ID: RT matched through EP Ibuprofen for Peak Identification (ID) CRS

Secondary Standards - Working Solutions for Mixtures

Acetaminophen

Components	USP	EP	RRF
Acetaminophen	-	-	1
4-acetoxyacetanilde	Α	Н	
N-(4-Hydroxy phenyl)propanamide	В	В	0.91
2- Acetamidophenol	С	Α	0.60
Acetanilide	D	D	1.33
4-Nitrophenol	F	F	0.46
4-Chloroacetanilide	J	J	-
4-Aminophenol		K	

USP/EP Impurities

- Secondary Standards certified by mass balance
- Traceable to USP & EP by assay
- Designed solution mixtures for daily working standard use

Wrap Up

Secondary Pharmaceutical Standards Portfolio

Conclusions

Pharma Secondary standards are CRMs

Secondary Pharmaceutical Standards available with

- -Traceability to current primary standards
- -Traceability to SI unit through Mass Balance approach

Detailed COA is maintained to current primary lots

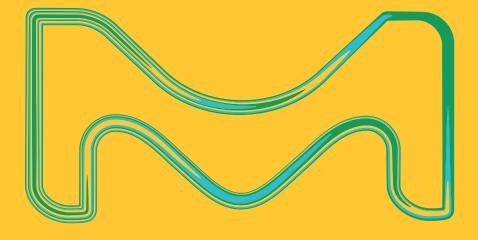
Increasing portfolio includes compendial & non-compendial impurities

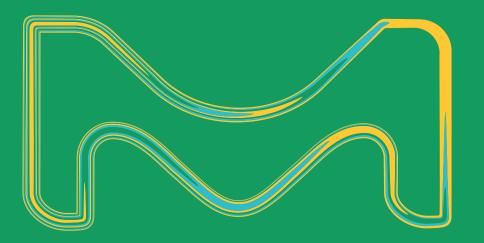
R&D

Markus

Jenna

PM


Michael



Contact

Contact

Michael Hurst
michael.hurst@milliporesigma.com
Product Manager
Reference Materials

